If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2=60
We move all terms to the left:
6y^2-(60)=0
a = 6; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·6·(-60)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*6}=\frac{0-12\sqrt{10}}{12} =-\frac{12\sqrt{10}}{12} =-\sqrt{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*6}=\frac{0+12\sqrt{10}}{12} =\frac{12\sqrt{10}}{12} =\sqrt{10} $
| 9v=21+6v | | 160=-8(-2-3p) | | k/10-1=2 | | (1/5)y+(2/3)=6 | | 20-4(x-5)=2x+16 | | 180=8x^2-4x+12 | | 6x+3=5x+11+x-8 | | 3y-9=11y+39 | | 4x-3x+6=7 | | (1k-9)=30 | | 5-2(4b+5)=b-2(b+6) | | 6x+7=10x+5 | | 50y^2-225y-7=0 | | b=80+(25+7) | | 6u-3u+3u=18 | | 1.2m+4.7-0.9m=-2.3+0.3+7.1 | | -8.75x+14=-5.25=-3.5 | | 2r+4(r+0.75)=6 | | 3(+2)-(2x-4)=-(4x+1) | | 11x-15+3x=7x+6+7 | | 6b^2+42b=0 | | 6x-20+7x-10+105=180 | | 4x/3+5/6=9/12 | | 4(-2x+6)=2x-26 | | (1k+9)=30 | | -112u-9+7u=26 | | 1695+5x=2295+2x | | 2(x+7)+5x=2x-3 | | 6(x+2)-3x=3x+12 | | 2(x+3)-2x=-(x-4)+2 | | 8j-11j+15j-7j=20 | | 4,075=250-150x |